Air/Water Heat Pumps
Outdoor Installation

Operating Manual
LW A series
Please read first

This operating manual provides important information on the handling of the unit. It is an integral part of the product and must be stored so that it is accessible in the immediate vicinity of the unit. It must remain available throughout the entire service life of the unit. It must be handed over to subsequent owners or operators of the unit.

Read the operating manual before working on or operating the unit. This applies in particular to the chapter on safety. Always follow all instructions completely and without restrictions.

It is possible that this operating manual may contain instructions that seem incomprehensible or unclear. In case of questions or uncertainty, contact the factory customer service department or the manufacturer’s local service partner.

Since this operating manual was written for several different models of the unit, always comply with the parameters for the respective model.

This operating manual is intended only for persons assigned to work on or operate the unit. Treat all constituent parts confidentially. The information contained herein is protected by copyright. No part of this operating manual may be reproduced, transmitted, copied, stored in electronic data systems or translated into another language, either wholly or in part, without the express written permission of the manufacturer.

Symbols

The following symbols are used in the operating manual. They have the following meaning:

- **Information for users.**

- **Information or instructions for qualified technicians.**

- **DANGER**
 Indicates a direct impending danger resulting in severe injuries or death.

- **WARNING**
 Indicates a possibly dangerous situation that could result in severe injuries or death.

- **CAUTION**
 Indicates a possibly dangerous situation that could result in medium or light injuries.

- **ATTENTION**
 Indicates a possibly dangerous situation, which could result in property damage.

- **NOTICE**
 Emphasized information.

- **ENERGY SAVING TIP**
 Indicates suggestions that help to save energy, raw materials and costs.

- Reference to other sections of the operating manual.

- Reference to other instructions of the manufacturer.
Contents

INFORMATION FOR USERS AND QUALIFIED PERSONNEL

- PLEASE READ FIRST .. 2
- SYMBOLS .. 2
- INTENDED USE ... 4
- EXCLUSION OF LIABILITY .. 4
- EC CONFORMITY ... 4
- SAFETY ... 4
- CUSTOMER SERVICE .. 5
- WARRANTY / GUARANTEE ... 5
- DISPOSAL ... 5
- OPERATING PRINCIPLE OF HEAT PUMPS 6
- AREA OF UTILIZATION ... 6
- HEAT QUANTITY RECORDING ... 6
- OPERATION ... 6
- CARE OF THE UNIT ... 7
- MAINTENANCE OF THE UNIT ... 7
- Cleaning and rinsing of unit components 7
- MALFUNCTIONS ... 7

INSTRUCTIONS FOR QUALIFIED TECHNICIANS

- SCOPE OF DELIVERY .. 8
- INSTALLATION AND ASSEMBLY 9
- Installation location ... 9
- Transport to installation location .. 9
- Sound ... 10
- Installation ... 13
- Attaching the air flow baffles .. 15
- Installation / connection to heating circuit 17
- Condensate discharge ... 19
- PRESSURE RELIEF .. 19
- OVERFLOW VALVE ... 19
- BUFFER TANK ... 19
- CIRCULATING PUMPS ... 19
- WATER HEATING ... 19
- HOT-WATER TANK ... 20
- ELECTRICAL CONNECTIONS .. 20
- RINSING, FILLING AND BLEEDING THE SYSTEM 23
 Water quality of the fill and additional water in hot water heating systems ... 23
- INSULATING THE HYDRAULIC CONNECTIONS 25
- SET THE OVERFLOW VALVE ... 25
- COMMISSIONING ... 26
 Safety temperature limiter ... 26

DISMANTLING .. 27

TECHNICAL DATA / SCOPE OF DELIVERY

- LW 71A – LW 121A ... 28
- LW 140A – LW 310A ... 30

PERFORMANCE CURVES

- LW 71A ... 32
- LW 81A ... 33
- LW 101A ... 34
- LW 121A ... 35
- LW 140A ... 36
- LW 180A ... 37
- LW 251A ... 38
- LW 310A ... 39

DIMENSIONAL DRAWINGS

- LW 71A – LW 81A ... 40
- LW 101A ... 41
- LW 121A ... 42
- LW 140A – LW 180A .. 43
- LW 251A ... 44
- LW 310A ... 45

INSTALLATION PLANS

- LW 71A – LW 81A ... 46
- LW 101A ... 47
- LW 121A ... 48
- LW 140A – LW 180A .. 49
- LW 251A ... 50
- LW 310A ... 51

HYDRAULIC INTEGRATION

- LW 71A – LW 251A
 Row tank ... 52
 Separate buffer tank ... 53
- LW 310A
 Row tank ... 54
 Separate buffer tank ... 55
 Legend Hydraulic integration .. 56

TERMINAL DIAGRAMS

- LW 71A – LW 81A ... 57
- LW 101A – LW 251A .. 58
- LW 310A ... 59

CIRCUIT DIAGRAMS

- LW 71A – LW 81A ... 60
- LW 101A – LW 121A .. 62
- LW 140A ... 64
- LW 180A ... 66
- LW 251A ... 68
- LW 310A ... 71

EC DECLARATION OF CONFORMITY 75
Intended use

The unit may be used only for the intended use. This means:

- for heating.
- for heating hot water.

The unit may be operated only within its technical parameters.

Overview “Technical data/scope of delivery”.

NOTICE
Notify the responsible power supply company of the use of a heat pump or heat pump system.

CAUTION
The unit is not suitable for use in IT network systems.

Exclusion of liability

The manufacturer will not be liable for damage resulting from unauthorized use of the unit.

The manufacturer’s liability will also be voided in the following cases:

- if work is performed on the unit and its components in a manner that does not comply with the terms of this operating manual;
- if work is performed on the unit and its components in an improper manner;
- if work is performed on the unit that is not described in this operating manual, and this work was not expressly approved in writing by the manufacturer;
- if the unit or components in the unit are modified, redesigned or removed without the express written permission of the manufacturer.

EC conformity

The unit bears the CE mark of conformity.

Safety

The unit is operationally safe when used for the intended purpose. The construction and design of the unit conform to the state of the art, all relevant DIN/VDE regulations and all relevant safety regulations.

Every person who performs work on the unit must have read and understood the operating manual prior to starting any work. This also applies if the respective person has already worked with such a unit or a similar unit or has been trained by the manufacturer.

Every person who performs work on the unit must comply with the applicable accident prevention and safety regulations. This applies in particular to the wearing of personal safety gear.

DANGER
Danger of fatal injury due to electric current!

Electrical connections may be installed only by qualified electricians.

Before opening the unit, disconnect the system from the power supply and secure it from being switched back on!

ATTENTION
If using the unit in 3~230V systems, please note that the residual-current circuit breaker (RCCB) used must be AC-DC sensitive.

WARNING
Only qualified technicians (trained heating, cooling and electrical technicians) may perform work on the unit and its components.

WARNING
Observe safety labels on and in the unit.

WARNING
Unit contains refrigerants! Leaking refrigerant could result in personal injury or material damage. Therefore:
- Shut down unit.
- Notify the manufacturer’s authorized service center.
ATTENTION
For safety reasons:
Never disconnect the unit from the power supply, unless the unit is being opened.

ATTENTION
Install the heat pump only outdoors and operate only with outside air as the heat source. Do not restrict or block the air-conducting sides.

WARNING
Never switch on unit if air flow baffles on the unit are removed.

ATTENTION
The integration of the heat pump in ventilation systems is not permissible. The use of the cooled air for cooling purposes is not permitted.

ATTENTION
The ambient air in the location where the heating pump is installed and also the intake air which is used as a source of heat must not contain any kind of corrosive components! Components such as ammonia, sulphur, chlorine, salt, sewer gas, flue gases etc. may cause damage leading to complete failure or even a total write-off of the heating pump!

CAUTION
In the air outlet area the air temperature is ca. 5 K below the ambient temperature. Under certain climatic conditions, therefore, an ice layer can form in the air outlet area. Install the heat pump so that the air blower does not blow in the direction of footpaths.

Customer service
For technical assistance, please contact your qualified technician or the manufacturer’s local service partner.

For a current list and additional partners of the manufacturer, please visit
DE: www.alpha-innotec.de
EU: www.alpha-innotec.com

Warranty / Guarantee
For warranty and guarantee conditions, please refer to the purchase documents.

NOTICE
Please contact your dealer concerning warranties and guarantees.

Disposal
When decommissioning the unit, always comply with applicable laws, directives and standards for the recovery, recycling and disposal of materials and components of cooling units.

“Dismantling”
Operating principle of heat pumps

Heat pumps operate on the principle of a refrigerator: the same technology, only with the opposite effect. The refrigerator extracts heat from foods, which is released into the room through fins on the back.

The heat pump extracts heat from our environment: air, earth or water. The extracted heat is conditioned in the unit and supplied to the heating water. Even when it is extremely cold outside, the heat pump draws enough heat to heat a house.

Example: drawing of a brine/water heat pump with floor heating:

\[
\begin{align*}
\text{ca. } & \frac{3}{4} \\
\frac{4}{4} & = \text{usable energy} \\
\text{ca. } & \frac{1}{4} = \text{environmental energy} \\
\text{ca. } & \frac{1}{4} = \text{external electrical energy}
\end{align*}
\]

Area of utilization

Taking into consideration the ambient conditions, limits of application and the applicable regulations, every heat pump can be utilized in new or existing heating systems.

Heat quantity recording

In addition to the proof of the unit’s efficiency, EEVaermeGalso meets the demand for a heat quantity recording (hereafter referred to as HQR). The HQR is mandatory with air/water heat pumps. With brine/water and water/water heat pumps, a HQR may only be set up when a forward flow temperature of ≥ 35 °C has been reached. The HQR must record the total warm energy release (heating and hot water) in the building. In heat pumps with heat quantity recording, the analysis is conducted by the regulator. The regulator displays the thermal energy that is exchanged from the heating system in kWh.

Operation

Your decision to purchase a heat pump or a heat pump system is a long-term contribution to protecting the environment through low emissions and reduced primary energy use.

You can operate and control the heat pump system with the control element of the heating and heat pump regulator.

\[\text{NOTICE} \quad \text{Make sure that the control settings are correct.}\]

Operating manual of the heating and heat pump regulator.

To ensure that your heat pump or heat pump system operates efficiently and ecologically, the following are especially important:

\[\text{ENERGY SAVING TIP} \quad \text{Avoid unnecessarily high flow temperatures. A lower flow temperature on the hot water side increases the efficiency of the system.}\]

\[\text{ENERGY SAVING TIP} \quad \text{When letting in fresh air, do not leave windows open for an extended period, thus saving energy and reducing your heating costs.}\]

Overview “Technical data/scope of delivery”.
Care of the unit

The outer surfaces of the unit can be cleaned with a damp cloth and household cleaning products.

Do not use cleaning or care products that contain abrasives, acids and/or chlorine. Such products would destroy the surfaces and could also damage the technical components of the unit.

Maintenance of the unit

The cooling circuit of the heat pump requires no regular maintenance.

According to EU regulation (EC) 517/2014, leak inspections and maintenance of a log book are required by law for certain heat pumps!

Log book for heat pumps, Section “Information on use of the log book”.

The components of the heating circuit and the heat source (valves, expansion vessels, circulating pumps, filters, dirt traps) should be inspected as well as cleaned as needed - at the very least annually - by a qualified heating or cooling system technician.

The intake and blow-out openings must be inspected for dirt at regular intervals (depending on the installation location) and cleaned, if necessary.

ATTENTION

Check regularly to ensure that the condensate can drain out of the unit unobstructed. To this end, regularly check the condensate pan in the unit and the condensate drain to ensure that they are clean / free from obstructions and clean as needed.

Icing of the protective grating

When temperatures fall below freezing and high levels of humidity are present, ice can form on the protective grating of the air flow baffles. In order to ensure problem-free operations, the ice must be removed on a regular basis.

It is a good idea to have a maintenance contract with a heating installation company. The company will conduct the required maintenance at regular intervals.

CLEANING AND RINSING OF UNIT COMPONENTS

CAUTION

Unit components may be cleaned and rinsed only by customer service personnel authorized by the manufacturer. Use only liquids recommended by the manufacturer.

Rinsing of the liquefier with chemical cleaning agents must be followed by neutralization of residue and intensive rinsing with water. Always observe the technical data of the manufacturer of the heat exchanger.

Malfunctions

In the event of a malfunction, you can detect the cause of the malfunction via the diagnostic program of the heating and heat pump regulator.

Operating manual of the heating and heat pump regulator.

WARNING

Service and repair work on the components of the unit may be performed only by customer service personnel authorized by the manufacturer.

Note that no malfunction is displayed if the safety temperature limiter on the electric heating element has been triggered (depending on unit model).

“Commissioning”, “Safety temperature limiter” section.
Scope of delivery

Example of scope of delivery:

LW 71... / LW 81... (ONE PACKING UNIT):

Compact unit with fully hermetically enclosed compressor, all safety-related components for monitoring of cooling circuit and hose for condensate discharge.

LW 101... THROUGH LW 310... (TWO PACKING UNITS):

Packing unit 1:

- Air flow baffles (quantity of 2, each in a separate box)

Packing unit 2:

Basis unit (this illustration shows an example LW 121...) with fully hermetically enclosed compressor, all safety-related components for monitoring of cooling circuit and hose for condensate discharge (connected on heat pump side).

1. Inspect delivery for outwardly visible signs of damage...
2. Check to make sure that delivery is complete... Any defects or incorrect deliveries must be claimed immediately.

NOTICE

- Note the model.
- Overview “Technical data/scope of delivery”.

ACCESSORIES NECESSARY FOR OPERATION

ATTENTION

Use only original accessories from the manufacturer of the unit.

Heating and heat pump controllers, as wall-mounted controllers or integrated in the hydraulic tower (for output range 7 – 18kW), as well as control and sensor cables, are functionally necessary accessories, which you must order separately.
The heat pump is a functioning unit only with the heating and heat pump regulator and the control and sensor wires.

Heating and heat pump regulator (for wall mounting)

Control and sensor wires are available in various lengths, as required.

ADDITIONAL ACCESSORIES

The installation accessories (vibration decouplers) for air/water outdoor installation heat pumps must be ordered separately.

With the LW 310A, you must select the electrical heating element for the specific system and order it separately.

Installation and assembly

Observe the following when performing all work:

NOTICE
Always comply with applicable accident prevention regulations, statutory regulations, ordinances and directives.

NOTICE
Observe the sound levels of the respective model.

Overview “Technical data/scope of delivery”, “Sound” section.

INSTALLATION LOCATION

ATTENTION
Install the unit only outdoors.

Dimensional drawing and installation plan for respective unit model.

TRANSPORT TO INSTALLATION LOCATION

To prevent damage during transport, always transport the unit to final installation location in its original packaging, using a lifting truck, forklift or crane.

WARNING
Several people are required to transport the unit. Do not underestimate the weight of the unit.

Overview “Technical data/scope of delivery”, “General unit data” section.

WARNING
Unit is not fastened to the wooden pallet. Danger of tipping over during transport! This can result in personal injury and damage to the unit.
– Take suitable precautionary measures to eliminate the danger of tipping.

ATTENTION
Never use components and hydraulic connections on the unit for purposes of transport.

ATTENTION
Do not tilt the unit more than a maximum of 45° (in any direction).
The noise emission from the heat pumps must be taken into account in the respective installation plans for air / water heat pumps. The respective regional regulations must be complied with.

The following sound pressure levels result, depending on the distance and installation variant with directivity factor Q. (page 12):

NOTE.
The following sound pressure levels are calculated values. Other constellations, adjoining other buildings or even reflecting surfaces may lead to a level increase. An exact specification of each sound pressure level is possible only through a measurement spot when the heat pump is already installed.

<table>
<thead>
<tr>
<th>LW 71A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 81A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 101A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 121A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 111A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 121A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 111A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>Q 2 4 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 47 43.5 41 39 37.4 36.1 34.9 33.9 33 32.2 31.4 30.7 30.1 29.5 28.9 28.4 27.9 27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 50 46.5 44 42 40.4 39.1 37.9 36.9 36 35.2 34.4 33.7 33.1 32.5 31.9 31.4 30.9 30.4 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 53 49.5 47 45 43.4 42.1 40.9 39.9 39 38.2 37.4 36.7 36.1 35.5 34.9 34.4 33.9 33.4 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW 140A</td>
<td>Distance from the heat pump in m</td>
<td>Directivity factor</td>
<td>Sound pressure level at max. heating output in dB(A)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Q 2</td>
<td>53</td>
<td>47</td>
<td>43.5</td>
</tr>
<tr>
<td>Q 4</td>
<td>56</td>
<td>50</td>
<td>46.5</td>
</tr>
<tr>
<td>Q 8</td>
<td>59</td>
<td>53</td>
<td>49.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 180A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Q 2</td>
<td>55</td>
<td>49</td>
<td>45.5</td>
</tr>
<tr>
<td>Q 4</td>
<td>58</td>
<td>52</td>
<td>48.5</td>
</tr>
<tr>
<td>Q 8</td>
<td>61</td>
<td>55</td>
<td>51.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 251A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Q 2</td>
<td>60</td>
<td>54</td>
<td>50.5</td>
</tr>
<tr>
<td>Q 4</td>
<td>63</td>
<td>57</td>
<td>53.5</td>
</tr>
<tr>
<td>Q 8</td>
<td>66</td>
<td>60</td>
<td>56.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LW 310A</th>
<th>Distance from the heat pump in m</th>
<th>Directivity factor</th>
<th>Sound pressure level at max. heating output in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Q 2</td>
<td>62</td>
<td>56</td>
<td>52.5</td>
</tr>
<tr>
<td>Q 4</td>
<td>65</td>
<td>59</td>
<td>55.5</td>
</tr>
<tr>
<td>Q 8</td>
<td>68</td>
<td>62</td>
<td>58.5</td>
</tr>
</tbody>
</table>
The directivity factor Q for the different installation variants:

- $Q = 2$
- $Q = 4$
- $Q = 8$

In case of 2 or more units of the same heat pump type, the respective level increase must be added to the corresponding sound pressure level from the following table:

<table>
<thead>
<tr>
<th>Number of n equally loud sound sources</th>
<th>Level increase ΔL in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0</td>
</tr>
<tr>
<td>2</td>
<td>3,0</td>
</tr>
<tr>
<td>3</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>6,0</td>
</tr>
<tr>
<td>5</td>
<td>7,0</td>
</tr>
<tr>
<td>6</td>
<td>7,8</td>
</tr>
<tr>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>8</td>
<td>9,0</td>
</tr>
<tr>
<td>9</td>
<td>9,5</td>
</tr>
<tr>
<td>10</td>
<td>10,0</td>
</tr>
<tr>
<td>12</td>
<td>10,8</td>
</tr>
</tbody>
</table>

In case of different, not equally loud units, the level increase is read off the following diagram:

Example: If the level difference between two unequal sound sources is 5 dB, the level increase is an additional 1.2 dB.
INSTALLATION

Place the unit on a solid, level foundation that is capable of bearing weight. Make sure that the foundation is designed for the weight of the heat pump. Materials that meet this requirement can be used for the foundation (concrete, stone slabs, etc.). The ground surface in the air outlet area of the heat pump must be permeable to water.

CAUTION
In the air outlet area the air temperature is ca. 5 K below the ambient temperature. Under certain climatic conditions, therefore, an ice layer can form in the air outlet area. Install the heat pump so that the air blower does not blow in the direction of footpaths.

NOTICE
Always observe the installation plan for the respective unit model. Note the size and minimum clearances.

Installation plan for respective unit model.

NOTICE
Set up the unit so that the switch cabinet side (= operating side) is accessible at all times.

PREPARING FOR INSTALLATION

LW 71… / LW 81…:

1 Remove facing panels on the switch cabinet side (= operator side) and the water connection side of the unit...

Loosen quick-release screws. Turn counter-clockwise 90°...

LW 101… THROUGH LW 180…:

1 Remove lower facing panels on the switch cabinet side (= operator side) and the water connection side of the unit...

Loosen quick-release screws. Turn counter-clockwise 90°...
Lifting the unit with pipes
(only LW 71… through LW 180…)

The units LW 71… through LW 180… can be lifted with ¾” pipes (provided by customer) that are suitable for the weight of the respective unit. Special holes are provided in the frame for this purpose.

NOTICE
For mode LW 251… and higher, lifting with pipes is not possible.

1. Insert the pipes through the holes in the frame on the switch cabinet side (= operator side)…

2. Guide pipes out through the holes on the water connection side…

LW 101… through LW 180…:

Make sure that pipes do not damage cable assemblies and components in the unit…

LW 71… / LW 81…:

Guide pipes carefully past cable assemblies and components in the unit…

LW 71… / LW 81…:

On both sides, pull lower facing panel upward and outward, detach and set securely aside.
Lift unit by the pipes, with at least four persons, and place on the base. Make sure that the frame of the unit is in full contact with the underlying surface.

LIFTING THE UNIT WITH A CRANE

1. Remove side laths on the wooden pallet...

2. Guide lifting straps under the unit. Insert laths or beams between the lifting straps and the unit in order to prevent damage to the housing, or remove facing panels (see removal instructions under “Attaching air flow baffles”)...

3. Lift unit with the crane and place on the base. Make sure that the frame of the unit is in full contact with the base.

ATTACHING THE AIR FLOW BAFFLES

(only for LW 101... through LW 310...)

WARNING

Unit has rotating parts. For safety reasons, mount the two air flow baffles on the unit before continuing with any other work.

DANGER

Lifting straps should not be too close together or too near the center; otherwise the unit may tip!
If you have not already done so, remove lower facing panels on the switch cabinet and water connection side of the unit…

To do so, loosen the two quick-release screws on the lower facing panels…

Pull each facing panel forward, detach from the unit and set securely aside…

Remove upper facing panels from unit…

To do so, loosen the two screws on the lower edges of the upper facing panels…

Pull each facing panel downward and forward, detach from top cover of unit and set securely aside…

The top cover of the unit was fastened by the upper facing panels. After removal of the upper facing panels, the top cover is loose. Remove top cover and set securely aside…

Install air flow baffles…

ATTENTION

Remove the protective sheeting from the air flow baffles before installation

Suspend air flow baffles on the brass bushings on the top side of the frame…

1 lower facing panels

2 upper facing panels

1 eyelet on air flow baffle

2 brass bushing on frame
The air flow baffles are now installed. You can now carry out mounting and installation work on the unit, and afterwards attach the lower facing panels. (see “Electrical connection work”, “Heat pump side connection of control and sensor wires”) ə.

INSTALLATION / CONNECTION TO HEATING CIRCUIT

ATTENTION
Connect the unit to the heating circuit according to the hydraulic diagram for the respective model.

“Hydraulic connection” instructions.

NOTICE
Check to make sure that the diameters and lengths of the pipes for the heating circuit (including the ground lead between the heat pump and the building!) are sufficiently dimensioned.

NOTICE
Circulating pumps must be multi-stage. They must be able to deliver at least the minimum hot water flow rate required for your model.

ATTENTION
The hydraulic system must be equipped with a buffer tank, the required volume of which depends on the model of your unit.

ATTENTION
When installing the connections, always secure the connections on the unit from twisting, in order to prevent damage to the copper pipes in the interior of the unit.
1 Rinse heating circuit thoroughly prior to connecting the unit to the heating circuit...

NOTICE
Contamination and deposits in the heating circuit can cause malfunctions.

2 Install shut-off devices for the hot water outflow (forward flow) and hot water inflow (return flow) on the heat pump side...

NOTICE
During installation of the shut-off devices, the liquefier of the heat pump can be rinsed, if necessary.

CAUTION
The condenser may be rinsed only by customer service personnel authorized by the manufacturer.

3 Connect the unit to the pipes of the heating circuit via vibration decouplers. They must be installed in order to prevent damage from vibrations to the pipes.

NOTICE
Vibration decouplers are available as accessories.

LW 71... / LW 81...:

1 Hot water inflow (return flow) connection
2 Hot water outflow (forward flow) connection
3 Condensate water hose

LW 101... / LW 121...:

1 Hot water inflow (return flow) connection
2 Hot water outflow (forward flow) connection
3 Condensate water hose

LW 140... THROUGH LW 310...:

1 Hot water inflow (return flow) connection
2 Hot water outflow (forward flow) connection
3 Condensate water hose

4 Install the condensate water hose in the unit so that there is no contact with refrigerant pipes...

5 Make sure that frost-free condensate discharge is ensured...

6 Seal empty pipes on unit side.
CONDENSATE DISCHARGE

The condensate from the air must be discharged frost-free via a condensate pipe with a minimum diameter of 50 mm. For underlying surfaces that are permeable to water, it is sufficient to insert the condensate pipe vertically at least 90 cm into the ground. If the condensate is discharged into drainage or sewage systems, install frost-free with gradient.

Discharge of the condensate into the sewage system is permitted only via a funnel siphon, which must be accessible at all times.

Pressure relief

Equip the heating circuit in accordance with local standards and directives with a safety valve and an expansion tank.

Also install filling and emptying devices, shut-off devices and non-return valves in the heating circuit.

Overflow valve

Use an overflow valve for tanks integrated in series to ensure the minimum flow rate of the heating circuit volume flow through the heat pump. The overflow valve must be dimensioned so that the minimum flow rate of the volume flow through the heat pump is ensured when the heating circuit is shut off.

Buffer tank

The hydraulic connection of the heat pump requires a buffer tank in the heating circuit. The required volume of the buffer tank is calculated based on the following formula:

\[V_{\text{buffer tank}} = \frac{\text{Minimum flow rate of heat circuit volume flow}}{10} \]

For the minimum flow rate of the heat circuit volume flow, see overview “Technical data/Scope of delivery”, “Heating circuit” section.

In mono-energetic air/water systems, integrate the buffer tank in the heating water outflow (forward flow) before the overflow valve.

Circulating pumps

CAUTION

Always note the model.

Do not use regulated circulating pumps.

Circulating pumps and domestic hot water circulation pumps must be multi-stage pumps.

Water heating

Water heating with the heat pump requires an additional hot water circuit, parallel to the heating circuit. Make sure that the heating water charge is not channeled through the buffer tank of the heating circuit.

“Hydraulic connection” instructions.
Electrical connections

Observe the following when performing all work:

DANGER
Danger of fatal injury due to electric current!
Electrical connections may be installed only by qualified electricians.

Before opening the unit, disconnect the system from the power supply and secure it from being switched back on!

WARNING
Observe the relevant EN, VDE and/or applicable local safety regulations during the installation and during all electrical work.

Comply with technical connection requirements of the responsible power supply company (if required by the latter)!

POWER CONNECTION

It is not necessary to open the electric switch cabinet in order to connect the power to the heat pump. The power is connected at the connection boxes on the water connection side.

1. If the unit is closed, open facing panels…

 "Preparing for installation"

2. Open connection boxes…

Hot-water tank

If the heat pump will be used for heating hot water, you must integrate special hot-water tanks in the heat pump system. The storage volume must be sufficient so that the required hot water quantity is available even during a power outage.

NOTICE

The heat exchanger surface of the hot water tank must be dimensioned so that the heating capacity of the heat pump is transferred with minimal spreading.

We offer a variety of hot-water tanks for you to choose from. They are optimized for use with your heat pump.

NOTICE

Integrate the hot-water tank in the heat pump system corresponding to the hydraulic diagram for your system.

LW 71... / LW 81...:

1. Connection box for electric heating element
2. Connection box for compressor

ATTENTION
If using the unit in 3~230V systems, please note that the residual-current circuit breaker (RCCB) used must be AC-DC sensitive.

HEAT PUMP SIDE CONNECTION OF THE CONTROL AND SENSOR WIRES

The heat pump is connected to the heating and heat pump regulator by means of the control and sensor wires. They are connected at the electric switch cabinet on the switch cabinet side (= operator side) of the heat pump.

LW 101… / LW 121…
1. Loosen mounting screws of the electric switch cabinet inside the unit...
2. Suspend electric switch cabinet outside in the provided recesses of the frame...
3. Connect power cable to the connection box (Electric heating element with the LW 310A on-site)...
4. Close connection box...
5. Install power cable in a conduit as far as where it enters the building and from there on to the fuse box...
6. Connect power cable to power supply.

ATTENTION
Ensure clockwise rotary field of the load power supply (compressor).
- An incorrect rotary field of the compressor during operation can cause serious, irreparable damage to the compressor.

ATTENTION
The power supply for the heat pump must be equipped with an all-pole miniature circuit-breaker with at least 3 mm contact spacing to IEC 60947-2.
Note the level of the release current.

ATTENTION
Do not tip electric switch cabinet.
3. Screw control and sensor wires to the two connectors on the back of the electric switch cabinet...

4. After connecting the control and sensor wires, fasten the electric switch cabinet in its original position...

5. Guide control and sensor wires out of the unit...

NOTICE
In order to enable unhinging of the electric switch cabinet in the event that customer service is necessary, the control and sensor wires in the heat pump must have an excess length of about 15 cm.

6. Install control and sensor wires in a conduit as far as where they enter the building and from there on to the heating and heat pump regulator...

7. Connect control and sensor wires to the heating and heat pump regulator according to the terminal diagram and the circuit diagrams for the respective model...

 “Terminal diagrams” and “Circuit diagrams” for the respective model.

 Operating manual of the heating and heat pump regulator.

8. Seal empty pipes on unit side...

9. Screw facing panels onto the heat pump.

NOTICE
Electric heating element is connected for 6 kW (9 kW) at factory. It can be connected for 2(3) or 4 kW (6 kW) on the contactor Q5 (Q6).

For further information, see the adhesive label on the electric heating element.

1. Screw control and sensor wires to the two connectors on the side of the electric switch cabinet...

2. Guide control and sensor wires inside the unit through the provided cable duct to the water connection side...

3. Guide control and sensor wires out of the unit...

NOTICE
In order to enable unhinging of the electric switch cabinet in the event that customer service is necessary, the control and sensor wires in the heat pump must have an excess length of about 15 cm.

4. Install control and sensor wires in a conduit as far as where they enter the building and from there on to the heating and heat pump regulator...

5. Connect control and sensor wires to the heating and heat pump regulator according to the terminal connection diagram and the circuit diagrams for the respective model...

 “Terminal diagrams” and “Circuit diagrams” for the respective model.

 Operating manual of the heating and heat pump regulator.
Rinsing, filling and bleeding the system

ATTENTION
The system must be absolutely free from air before commissioning.

WATER QUALITY OF THE FILL AND ADDITIONAL WATER IN HOT WATER HEATING SYSTEMS

ACCORDING TO VDI 2035 PART I AND II

Use of modern, energy-efficient heat pump systems is becoming increasingly widespread. Their ingenious technology enables these systems to achieve very good efficiencies. The decreasing space available for heat generators has led to the development of compact units with increasingly smaller cross-sections and high capacities. This means the complexity of the systems and the material diversity are also increasing, which plays an important role especially in their corrosion behaviour. The heating water not only affects the efficiency of the system, but also the life of the heat generator and the heating components of a system.

The guide values of VDI 2035 Part I and Part II must therefore be complied with as minimum requirements for proper operation of the systems. Our practical experience has shown that the safest and most trouble-free running of the systems is achieved with so-called low-salt operation.

VDI 2035 Part I gives important information and recommendations regarding scaling and its prevention in heating and domestic hot water heating systems.

VDI 2035 Part II primarily deals with the requirements for reducing heating water corrosion in hot water heating systems.

PRINCIPLES OF PART I AND PART II

The occurrence of scaling and corrosion damage in hot water heating systems is low, if
- proper planning and commissioning is carried out
- the system is closed in corrosion terms
- adequately dimensioned pressurising is integrated
- the guide values for the heating water are complied with
- and regular servicing and maintenance are carried out.

A system log should be kept, in which the relevant planning data is entered (VDI 2035).

6 Seal empty pipes on unit side…
7 Screw facing panels onto the heat pump…

Place lower facing panels diagonally into the frame, close at top and fasten with in quick-release screws…

The unit is now closed.
DAMAGE THAT CAN OCCUR IN CASE OF NON-COMPLIANCE

- Malfunctions and the failure of components (e.g. pumps, valves)
- Internal and external leaks (e.g. from heat exchangers)
- Cross-section reduction and blockaging of components (e.g. heat exchanger, pipes, pumps)
- Material fatigue
- Gas bubbles and gas cushion formation (cavitation)
- Negative effect on heat transfer (formation of coatings, deposits) and associated noises (e.g. boiling noises, flow noises)

LIMESCALE – THE ENERGY KILLER

Filling with untreated drinking water inevitably leads to the precipitation of all calcium as scale. The consequence: limescale deposits form on the heat transfer surfaces of the heating. The efficiency falls and the energy costs rise. A rule of thumb is that 1 millimetre of limescale deposit causes an energy loss of 10%. In extreme cases it can even cause damage to the heat exchangers.

WATER SOFTENING TO VDI 2035 – PART I

If the water is softened before the heating is filled, in accordance with the VDI 2035 guidelines, no scale can form. This effectively and permanently prevents limescale deposits and the resulting negative effects on the entire heating system.

CORROSION – AN UNDERESTIMATED PROBLEM

VDI 2035, Part II, deals with the problem of corrosion. Softening the heating water can prove to be insufficient. The pH value can significantly exceed the limit of 10. pH values higher than 11 can set in, which even damage rubber seals. The VDI 2035, Part I guidelines are fulfilled, however, VDI 2035, Part 2 suggests a pH value between 8.2 and maximum 10.

If aluminium materials are used, which is the case in many modern heating systems, a pH value of 8.5 must not be exceeded, because otherwise there is a threat of corrosion – and aluminium is attacked without the presence of oxygen. Therefore, apart from softening the heating fill and additional water, the heating water should also be appropriately conditioned. This is the only way to comply with the VDI 2035 requirements and the recommendations and installation instructions of the heat pump manufacturer.

Part 2 of VDI 2035 also points out the reduction in total salt content (conductivity). The risk of corrosion is far lower if deionised water is used than is the case if the system is operated with salty, i.e. softened water.

Even if the water has been softened beforehand, it contains dissolved, corrosion-promoting salts, which act as electrolytes due to the use of different materials in the heating system and therefore accelerate corrosion processes. This can ultimately result in pitting.

Contamination and deposits in the heating circuit can cause malfunctions.

RINSE, FILL AND BLEED THE HEATING CIRCUIT AND HOT WATER BUFFER TANK

To bleed the hot water tank, the heating circuit and hot water circuit must be rinsed simultaneously.

ON THE SAFE SIDE WITH LOW-SALT OPERATION

The problems listed above do not occur at all with low-salt operation, as neither corrosive salts such as sulphates, chlorides and nitrates nor alkalisising sodium hydrogen carbonate are in the heating water. The corrosive properties of deionised water are very low and in addition, fur cannot form in the boiler. This is the ideal approach for closed heating circuits, in particular, because low oxygen input into the heating circuit can also be tolerated.

In general, when the system is filled with deionised water, the pH value sets itself within the ideal range due to “self-alkalinisation”. If necessary, a pH value of 8.2 can be very easily alkalinised by adding chemicals. In this way, optimum protection of the entire heating system is achieved.

MONITORING

Analytical recording and monitoring of the relevant water values and the added active conditioning substances is of decisive importance. Therefore, they should be monitored regularly using appropriate water test equipment.
Insulating the hydraulic connections

Insulate the vibration decouplers and the outside pipes of the heating circuit so that they are sealed against vapor diffusion.

⚠️ **NOTICE**
Insulate in accordance with applicable local standards and directives.

⚠️ **ATTENTION**
Install the outside pipes of the heating circuit beneath the frost line.

① Check seals of all hydraulic connections. Conduct pressure test...
② Insulate all connections and lines of the heat circuit and the heat source.

Set the overflow valve

⚠️ **REMARQUE**
The activities in this section are only necessary for in-line tank integration.

Complete the worksteps quickly, otherwise the maximum return temperature can be exceeded and the heat pump switches to high-pressure fault.

Turn the adjusting knob at the overflow valve to the right to increase the temperature difference (the temperature drop), turn it to the left to reduce it.

System is running in heating mode (ideally in cold condition).

① In case of low heating curve: Set the system to “Forced heating”…

📖 Operating manual of the heating and heat pump controller.
② Shut off valves to the heating circuit…
③ Ensure that the total flow is routed via the overflow valve…
④ Read out the flow and return temperature at the heating and heat pump controller…

📖 Operating manual of the heating and heat pump controller.
⑤ Turn the adjusting knob (1) of the overflow valve (2) until the temperature drop between the flow and return temperature is set as follows:

<table>
<thead>
<tr>
<th>External temperature</th>
<th>Recommended settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 °C</td>
<td>4 K</td>
</tr>
<tr>
<td>0 °C</td>
<td>5 K</td>
</tr>
<tr>
<td>10 °C</td>
<td>8 K</td>
</tr>
<tr>
<td>20 °C</td>
<td>9 K</td>
</tr>
<tr>
<td>30 °C</td>
<td>10 K</td>
</tr>
</tbody>
</table>

⑥ Open valves to heating circuit…
⑦ Reset the heating and heat pump controller.
Commissioning

WARNING!
Prior to commissioning the unit, the air flow baffles must be mounted and the facing panels closed.

NOTE.
The commissioning has to be in the heating mode.

1. Carry out a thorough installation check and work through the general checklist...

2. By checking the installation you prevent damage to the heat pump system, which could be caused by work carried out improperly.

Check that...

- **clockwise rotary field** of the load power supply (compressor) is ensured.
- The heat pump installation and assembly have been carried out according to the requirements of this operating manual.
- the electrical installation work has been completed properly.
- The power supply for the heat pump must be equipped with an all-pole automatic circuit-breaker with at least 3 mm contact spacing to IEC 60947-2.
- The heating circuit is flushed, filled and thoroughly vented.
- All valves and shut-off devices of the heating circuit are open.
- All pipe systems and components of the system are leaktight.

3. Carefully fill out and sign the completion report for heat pump systems...

4. The heat pump system is commissioned by customer service personnel authorised by the manufacturer. There is a fee for starting up!

SAFETY TEMPERATURE LIMITER

A safety temperature limiter is built into the electric heating element (depending on model). In the event of a malfunction in the heat pump or air in the system, check whether the reset button of the safety temperature limiter has tripped. If this is the case, push in the button.

1. Safety temperature button on electric heating element
2. Reset button
Dismantling

DANGER
Danger of fatal injury due to electric current!
Electrical connections may be installed only by qualified electricians.
Before opening the unit, disconnect the system from the power supply and secure it from being switched back on!

WARNING
Only qualified heating or cooling system technicians are allowed to remove the unit from the system.

ATTENTION
Recycle or provide for proper disposal of unit components, refrigerants and oil in accordance with the applicable regulations, standards and directives.

REMOVAL OF THE BUFFER BATTERY

ATTENTION
Before scrapping the heating and heat pump regulator, remove the buffer battery on the processor board. The battery can be pushed out using a screwdriver. Dispose of battery and electronic components in keeping with environmental considerations.
Technical data / scope of delivery

Heat pump type
- Brine/water
- Air/water
- Water/water

Installation location
- Indoors
- Outdoors

Conformity
- CE

Performance data

<table>
<thead>
<tr>
<th>Model designation</th>
<th>Heat pump type</th>
<th>Installation location</th>
<th>Conformity</th>
<th>Performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limits of application

<table>
<thead>
<tr>
<th>Heating circuit °C</th>
<th>Heat source °C</th>
<th>Additional operating points °C</th>
</tr>
</thead>
</table>

Sound

<table>
<thead>
<tr>
<th>Internal sound pressure level (open air test field, distance of 1m around the engine, average)</th>
<th>External sound pressure level (open air test field, distance of 1m around the air supplies, average)</th>
<th>Sound power inside</th>
<th>Sound power outside</th>
</tr>
</thead>
</table>

Heat source

<table>
<thead>
<tr>
<th>Air volume flow at maximum external compression</th>
<th>Maximum external pressure</th>
</tr>
</thead>
</table>

Heating circuit

<table>
<thead>
<tr>
<th>Volume flow: minimum flow rate</th>
<th>nominal flow rate</th>
<th>maximum flow rate</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pressure loss heat pump</th>
<th>volume flow</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Free compression heat pump</th>
<th>volume flow</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Content of buffer tank</th>
<th>3-way valve, heating/hot water</th>
</tr>
</thead>
</table>

General unit data

<table>
<thead>
<tr>
<th>Dimensions (see dimensional drawing for the specified unit size)</th>
<th>unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total weight</td>
<td>kg</td>
</tr>
</tbody>
</table>

Electric

<table>
<thead>
<tr>
<th>Voltage code</th>
<th>all-pole circuit breaker heat pump **)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voltage code</th>
<th>circuit breaker control voltage **)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voltage code</th>
<th>circuit breaker electric heating element **)</th>
</tr>
</thead>
</table>

| Maximum device current within the limits of application | kW |

| Starting current: direct with soft starter | A |
| Protection type | IP |

Heat Pump

| Effective power consumption in standard point A7/W35 according to EN 14511: Power consumption | kW |

Components

| Circulating pump heating circuit at nominal flow rate: Power consumption | kW |

Safety equipment

<table>
<thead>
<tr>
<th>Safety component heating circuit</th>
<th>Safety component heat source</th>
</tr>
</thead>
</table>

Heating and heat pump regulator

| Incl. in scope of delivery: | yes | no |

Control and sensor wire

| Incl. in scope of delivery: | yes | no |

Power cable to unit

| Incl. in scope of delivery: | yes | no |

Electronic soft starter

| integrated: | yes | no |

Expansion vessels

<table>
<thead>
<tr>
<th>Heat source: Scope of delivery</th>
<th>Volume</th>
<th>Initial pressure</th>
</tr>
</thead>
</table>

Overflow valve

| Incl. in scope of delivery: | yes | no |

Vibration decouplers

| Heat source | Included in scope of delivery: | yes | no |

1) hot water return
2) hot water flow

*) depending on components tolerances and flow
**) comply with local regulations
n.n. = not detectable
w.w. = to choice
<table>
<thead>
<tr>
<th>LW 71A</th>
<th>LW 81A</th>
<th>LW 101A</th>
<th>LW 121A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1 i 3.9</td>
<td>9.4 i 3.9</td>
<td>10.3 i 4.2</td>
</tr>
<tr>
<td></td>
<td>7.7 i 3.0</td>
<td>9.0 i 3.0</td>
<td>10.1 i 3.5</td>
</tr>
<tr>
<td></td>
<td>7.2 i 3.5</td>
<td>8.4 i 3.5</td>
<td>9.5 i 3.7</td>
</tr>
<tr>
<td></td>
<td>8.8 i 4.3</td>
<td>10.3 i 4.3</td>
<td>11.1 i 4.4</td>
</tr>
<tr>
<td></td>
<td>5.7 i 2.8</td>
<td>6.6 i 2.8</td>
<td>7.5 i 2.9</td>
</tr>
<tr>
<td>20 – 58 (60)*</td>
<td>20 – 58 (60)*</td>
<td>20-50</td>
<td>20-50</td>
</tr>
<tr>
<td>20 – 35</td>
<td>20 – 35</td>
<td>A> -7 / 60°</td>
<td>A> -7 / 60°</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>58</td>
<td>62</td>
<td>58</td>
<td>61</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>1000 i 1500 i 1900</td>
<td>1200 i 1750 i 2200</td>
<td>1500 i 2000 i 2500</td>
<td>1650 i 2500 i 3100</td>
</tr>
<tr>
<td>0,1 i 1500</td>
<td>0,12 i 1750</td>
<td>0,09 i 2000</td>
<td>0,09 i 2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>145</td>
<td>145</td>
<td>280</td>
</tr>
<tr>
<td>R404A i 2.4</td>
<td>R404A i 2.8</td>
<td>R407C i 4.8</td>
<td>R407C i 5.8</td>
</tr>
<tr>
<td>30 i 1</td>
<td>30 i 1</td>
<td>30 i 1</td>
<td>30 i 1</td>
</tr>
<tr>
<td>3~/N/PE/400V/50Hz</td>
<td>3~/N/PE/400V/50Hz</td>
<td>3~/N/PE/400V/50Hz</td>
<td>3~/N/PE/400V/50Hz</td>
</tr>
<tr>
<td>3~/N/PE/400V/50Hz i B10</td>
<td>3~/N/PE/400V/50Hz i B10</td>
<td>3~/N/PE/400V/50Hz i B10</td>
<td>3~/N/PE/400V/50Hz i B10</td>
</tr>
<tr>
<td>2,1 i 4,0 i 0,75</td>
<td>2,4 i 4,6 i 0,75</td>
<td>2,6 i 5,4 i 0,7</td>
<td>3,1 i 6,4 i 0,7</td>
</tr>
<tr>
<td>8,4</td>
<td>8,4</td>
<td>9.2</td>
<td>11,5</td>
</tr>
<tr>
<td>35 i 22</td>
<td>45 i 22</td>
<td>51,5 i 19</td>
<td>64 i 23</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>6 i 4 i 2</td>
<td>6 i 4 i 2</td>
<td>9 i 6 i 3</td>
<td>9 i 6 i 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject to change without notice | 83054200hUK – Translation into English of the original German operating manual | ait-deutschland GmbH
Technical data / scope of delivery

Heat pump type
- Brine/water | Air/water | Water/water
 - applicable | — not applicable

Installation location
- Indoors | Outdoors
 - applicable | — not applicable

Conformity
- CE

Performance data

<table>
<thead>
<tr>
<th>Model designation</th>
<th>Heat pump type</th>
<th>Heat source</th>
<th>Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7/W35</td>
<td>Standard point acc. to EN14511</td>
<td>1 Compressor</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>Standard point acc. to EN14511</td>
<td>2 Compressors</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>Operating point according to EN14511</td>
<td>1 Compressor</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>Operating point according to EN14511</td>
<td>2 Compressors</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>Operating point according to EN14511</td>
<td>1 Compressor</td>
<td>kW</td>
</tr>
<tr>
<td>A-15/W65</td>
<td>2 Compressors</td>
<td>kW</td>
<td></td>
</tr>
</tbody>
</table>

Limits of application

- Heating circuit °C
- Heat source °C
- Additional operating points °C

Sound

<table>
<thead>
<tr>
<th>Description</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal sound pressure level (open air test field, distance of 1m around the engine, average)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>External sound pressure level (open air test field, distance of 1m around the air supplies, average)</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Sound power inside</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Sound power outside</td>
<td>dB(A)</td>
</tr>
</tbody>
</table>

Heat source

- Air volume flow at maximum external compression m³/h
- Maximum external pressure Pa

Heating circuit

- Volume flow: minimum flow rate | nominal flow rate A7/W35 EN14511 | maximum flow rate l/h
- Pressure loss heat pump ∆p | volume flow bar l/h
- Free compression heat pump ∆p | volume flow bar l/h
- Content of buffer tank l
- 3-way valve, heating/hot water

General unit data

- Dimensions (see dimensional drawing for the specified unit size) unit size
- Total weight kg
- Connections Heating circuit
- Heat source
- Refrigerant Refrigerant type | Quantity kg
- Free cross section, condensate water / length from unit mm m

Electric

- Voltage code | all-pole circuit breaker heat pump ***) | A
- Voltage code | circuit breaker control voltage **') | A
- Voltage code | circuit breaker electric heating element **) | A
- Effective power consumption in standard point A7/W35 according to EN14511: Power consumption | current consumption cosφ kW A |
- Maximum device current within the limits of application A
- Starting current: direct | with soft starter A A
- Protection type | IP
- Output electric heating element 3 | 2 | 1 phase kW kW kW
- Circulating pump heating circuit at nominal flow rate: Power consumption | current consumption kW A

Components

- Safety component heating circuit | Safety component heat source
- Heat Pump
- Control and sensor wire
- Power cable to unit
- Electronic soft starter
- Expansion vessels
- Overflow valve
- Vibration decouplers

Safety equipment

- Includ. in scope of delivery: yes | no

Heating and heat pump regulator

- Includ. in scope of delivery: yes | no

Control and sensor wire

- Includ. in scope of delivery: yes | no

Power cable to unit

- Includ. in scope of delivery: yes | no

Electronic soft starter

- integrated: yes | no

Expansion vessels

- Heat source: Scope of delivery | Volume | Initial pressure
- yes | no l l bar

Overflow valve

- included in scope of delivery: yes | no

Vibration decouplers

- Heating circuit | heat source
- Included in scope of delivery: yes | no

*) depending on components tolerances and flow
**) comply with local regulations
n.n. = not detectable
w.w. = to choice
¹) hot water return
²) hot water flow
Model Designation

<table>
<thead>
<tr>
<th>LW 140A</th>
<th>LW 180A</th>
<th>LW 251A</th>
<th>LW 310A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.4 ^1</td>
<td>19.6 i 3.9</td>
<td>10.1 i 4.2</td>
<td>27.3 i 3.9</td>
</tr>
<tr>
<td>13.9 ^1</td>
<td>9.8 i 3.4</td>
<td>9.8 i 3.4</td>
<td>5.0 (2.4) i 0.7 (0.7)</td>
</tr>
<tr>
<td>13.8 ^1</td>
<td>9.5 i 3.8</td>
<td>12.2 i 3.8</td>
<td>7.3 (0.7) i 0.7 (0.7)</td>
</tr>
<tr>
<td>14.1 i 4.4</td>
<td>10.3 i 4.5</td>
<td>21.2 i 4.0</td>
<td>14.2 i 4.5</td>
</tr>
<tr>
<td>10.8 i 3.0</td>
<td>7.3 i 2.9</td>
<td>19.4 i 2.9</td>
<td>25.0 i 2.8</td>
</tr>
</tbody>
</table>

Expansion Vessels
- **LW 140A:** No
- **LW 180A:** Yes
- **LW 251A:** Yes
- **LW 310A:** Yes

Control and Sensor Wire
- **LW 140A:** No
- **LW 180A:** Yes
- **LW 251A:** Yes
- **LW 310A:** Yes

Heating and Heat Pump Regulator
- **LW 140A:** Yes
- **LW 180A:** Yes
- **LW 251A:** Yes
- **LW 310A:** Yes

Dimensions
- **LW 140A:** Refer to dimensional drawing
- **LW 180A:** Refer to dimensional drawing
- **LW 251A:** Refer to dimensional drawing
- **LW 310A:** Refer to dimensional drawing

Performance Data
- **LW 140A:** Refer to operating point according to EN14511
- **LW 180A:** Refer to operating point according to EN14511
- **LW 251A:** Refer to operating point according to EN14511
- **LW 310A:** Refer to operating point according to EN14511

Heat Pump Type
- **LW 140A:** Brine/water
- **LW 180A:** Brine/water
- **LW 251A:** Brine/water
- **LW 310A:** Brine/water

Voltage Code
- **LW 140A:** 3~/N/PE/400V/50Hz
- **LW 180A:** 3~/N/PE/400V/50Hz
- **LW 251A:** 1~/N/PE/230V/50Hz
- **LW 310A:** 1~/N/PE/230V/50Hz

Cross Section
- **LW 140A:** 30 mm
- **LW 180A:** 50 mm
- **LW 251A:** 5600 mm
- **LW 310A:** 5600 mm

Sound Pressure Level
- **LW 140A:** 813514c dB(A)
- **LW 180A:** 813514c dB(A)
- **LW 251A:** 813514c dB(A)
- **LW 310A:** 813514c dB(A)

Free Cross Section
- **LW 140A:** 150 mm
- **LW 180A:** 200 mm
- **LW 251A:** 5600 mm
- **LW 310A:** 5600 mm

Maximum Device Current
- **LW 140A:** 4.0 kW
- **LW 180A:** 7.0 kW
- **LW 251A:** 9.0 kW
- **LW 310A:** 13.0 kW

Heat Source
- **LW 140A:** 74° C
- **LW 180A:** 26° C
- **LW 251A:** 24° C
- **LW 310A:** 26° C

Pressure Loss
- **LW 140A:** 1.0 bar
- **LW 180A:** 2.4 bar
- **LW 251A:** 2.4 bar
- **LW 310A:** 2.4 bar

¹ Hot water return
² Hot water flow

Subject to change without notice | 83054200hUK – Translation into English of the original German operating manual | ait-deutschland GmbH
LW 71A

Performance curves

Qh (kW)

\[\begin{align*}
\text{Temp}_W & \quad \text{Pe (kW)} \\
-20 & \quad 1 \\
-15 & \quad 2 \\
-10 & \quad 3 \\
-5 & \quad 4 \\
0 & \quad 5 \\
5 & \quad 6 \\
10 & \quad 7 \\
20 & \quad 8 \\
30 & \quad 9 \\
35 & \quad 10
\end{align*} \]

COP

\[\begin{align*}
\text{Temp}_W & \quad \text{COP} \\
-20 & \quad 1 \\
-15 & \quad 2 \\
-10 & \quad 3 \\
-5 & \quad 4 \\
0 & \quad 5 \\
5 & \quad 6 \\
10 & \quad 7 \\
20 & \quad 8 \\
30 & \quad 9 \\
35 & \quad 10
\end{align*} \]

\[\begin{align*}
\text{Temp}_W & \quad \Delta p (\text{bar}) \\
-20 & \quad 0,0 \\
-15 & \quad 0,1 \\
-10 & \quad 0,2 \\
-5 & \quad 0,3 \\
0 & \quad 0,4 \\
5 & \quad 0,5 \\
10 & \quad 1,0 \\
15 & \quad 1,5 \\
20 & \quad 2,0 \\
25 & \quad 2,5 \\
30 & \quad 3,0
\end{align*} \]

Legend:

- **UK823129L/170408**
- **V\text{H}W** Volume flow, heating water
- **Temp\text{W}** Temperature, heat source
- **Qh** Heating capacity
- **Pe** Power consumption
- **COP** Coefficient of performance / efficiency rating
- **\Delta p\text{H}W** Pressure loss heat pump
- **VD** Compressor(s)

Datei: 823150 Leistungs-Druckverlustkurven LW 71A.xls

Zeichnungsnummer: 823150

Än/ÄM/Är/Ät/Äu

Ä/Ä/Ä/Ä/Ä

Än/ÄM/Är/Ät/Äu
Performance curves LW 81A

Legend:
- UK823129L/170408
- \(V_{\text{HW}} \) Volume flow, heating water
- \(\text{Temp}_{\text{WQ}} \) Temperature, heat source
- \(\text{Qh} \) Heating capacity
- \(\text{Pe} \) Power consumption
- \(\text{COP} \) Coefficient of performance / efficiency rating
- \(\Delta p_{\text{HW}} \) Pressure loss heat pump
- \(\text{VD} \) Compressor(s)
LW 101A

Performance curves

Qh (kW) vs Temp_{WQ} (°C)

COP vs Temp_{WQ} (°C)

∆p (bar) vs V_{HW} (m³/h)

Legend:
- UK823129L/170408
- V_{HW} Volume flow, heating water
- Temp_{WQ} Temperature, heat source
- Qh Heating capacity
- Pe Power consumption
- COP Coefficient of performance / efficiency rating
- ∆p_{HW} Pressure loss heat pump
- VD Compressor(s)
Performance curves LW 121A

Legend:
- UK823129L/170408
- V_{HW}: Volume flow, heating water
- Temp_{HW}: Temperature, heat source
- Q_h: Heating capacity
- P_e: Power consumption
- COP: Coefficient of performance / efficiency rating
- ΔP_{HW}: Pressure loss heat pump
- VD: Compressor(s)
LW 140A

Performance curves

Legend:
- UK823129L/170408
- V_{HW}: Volume flow, heating water
- Temp_{WQ}: Temperature, heat source
- Q_h: Heating capacity
- P_e: Power consumption
- COP: Coefficient of performance / efficiency rating
- Δp_{HW}: Pressure loss heat pump
- VD: Compressor(s)

823154
Subject to change without notice | 83054200hUK – Translation into English of the original German operating manual | ait-deutschland GmbH

Bezeichnung:
Seite: 1/1

Nitrogen / VD

Leistungsaufnahme
Coefficient of performance / Leistungszahl
Qh
Pe
COP
∆p

Legende: DE823129L/170408

Datei: 823155 Leistungs-Druckverlustkurven LW180 (L;A).xls
Zeichnungsnummer: 823155

Qh (kW)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Temp\(_{\text{WQ}}\) (°C)

COP

1 2 3 4 5 6 7 8 9 10

Temp\(_{\text{WQ}}\) (°C)

Pe (kW)

2 3 4 5 6 7 8 9 10

Temp\(_{\text{WQ}}\) (°C)

∆p (bar)

0,0000 0,0 1,0 2,0 3,0 4,0 5,0 6,0

V\(_{\text{HW}}\) (m³/h)

Legend:

UK823129L/170408

V\(_{\text{HW}}\) Volume flow, heating water
Temp\(_{\text{WQ}}\) Temperature, heat source
Qh Heating capacity
Pe Power consumption
COP Coefficient of performance / efficiency rating
∆P\(_{\text{HW}}\) Pressure loss heat pump
VD Compressor(s)
LW 251A
Performance curves

Qh (kW)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Performance curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>35°C 1VD</td>
<td></td>
</tr>
<tr>
<td>50°C 1VD</td>
<td></td>
</tr>
<tr>
<td>35°C 2VD</td>
<td></td>
</tr>
<tr>
<td>50°C 2VD</td>
<td></td>
</tr>
</tbody>
</table>

COP

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Performance curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>35°C 1VD</td>
<td></td>
</tr>
<tr>
<td>50°C 1VD</td>
<td></td>
</tr>
<tr>
<td>35°C 2VD</td>
<td></td>
</tr>
<tr>
<td>50°C 2VD</td>
<td></td>
</tr>
</tbody>
</table>

Δp (bar)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Performance curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>35°C 1VD</td>
<td></td>
</tr>
<tr>
<td>50°C 1VD</td>
<td></td>
</tr>
<tr>
<td>35°C 2VD</td>
<td></td>
</tr>
<tr>
<td>50°C 2VD</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- UK823129L/170408
- Volume flow, heating water
- Temperature, heat source
- Heating capacity
- Power consumption
- Coefficient of performance / efficiency rating
- Pressure loss heat pump
- Compressor(s)
Performance curves LW 310A

Legend:
- UK823129L/170408
- Volume flow, heating water (V_{HW})
- Temperature, heat source (Temp_{WO})
- Heating capacity (Q_h)
- Power consumption (P_e)
- Coefficient of performance / efficiency rating (COP)
- Pressure loss heat pump (ΔP_{HW})
- Compressor(s) (VD)
LW 71A – LW 81A

Dimensional drawings

Legend:
- A: Front view
- B: Side view
- C: Top view

1. Hot water outflow (forward flow) R1"
2. Hot water inflow (return flow) R1"
3. Condensate hose diameter 36 mm
LE: Air inflow
LA: Air outflow

All dimensions in mm.
Dimensional drawings

Key: UK819351d
Subject to technical change without notice.
All dimensions in mm.

A Front view
B Side view from left
C Plan view
 (Section, without façade and shrouds)

1 Heating water outlet (flow) R 1"
2 Heating water inlet (return) R 1"
3 Condensate hose, outside - 36x3
4 Baseplate
LR Air direction
Key: UK819435
Subject to technical change without notice.
All dimensions in mm.

A Front view
B Side view
C Plan view
 (Section, without façade and shrouds)

1 Heating water outlet (flow) R 1"
2 Heating water inlet (return) R 1"
3 Condensate hose, outside Ø 36x3
4 Baseplate
LR Air direction
Dimensional drawings

Key: UK819436
Subject to technical change without notice.
All dimensions in mm.

A Front view
B Side view
C Plan view
 (Section, without façade and shrouds)

1 Heating water outlet (flow) R 1 1/4"
2 Heating water inlet (return) R 1 1/4"
3 Condensate hose, outside -<MOD-DIAM> 36x3
4 Baseplate
LR Air direction

LW 140A – LW 180A
LW 251A

Dimensional drawings

Key: UK819437
Subject to technical change without notice.
All dimensions in mm.

A Front view
B Side view
C Plan view
 (Section, without façade and shrouds)

1 Heating water outlet (flow) R 1 1/4"
2 Heating water inlet (return) R 1 1/4"
3 Condensate hose, outside - 36x3
4 Baseplate
LR Air direction
Dimensional drawings LW 310A

Key: UK819326b
Subject to technical change without notice.
All dimensions in mm.

A Front view
B Side view
C Plan view (section, without façade and shrouds)

1 Heating water outlet (flow) R 1 1/2"
2 Heating water inlet (return) R 1 1/2"
3 Condensate hose, outside Ø 36x3
4 Baseplate
LR Air direction
LR Luftrichtung
LW 71A – LW 81A

A

Installation plan

C

Legend:

UK819374a

All dimensions in mm.

A Front view
C Top view

— — — Unit contour

≥ … Minimum clearances
1 Recess in base
2 Local heat pipe for heating water forward/return flow *)
3 Empty pipe for electric cables, minimum diameter 70mm *)
4 Condensate discharge, minimum diameter 50mm *)
5 Base
LE Air inflow
LA Air outflow

*) see planning documents
Legend: UK819375a
All dimensions in mm.
A Front view
C Top view
≥ … Minimum clearances
1 Recess in base
2 Local heat pipe for heating water forward/return flow
3 Empty pipe for electric cables, minimum diameter 70mm
4 Condensate discharge, minimum diameter 50mm
5 Water-permeable surface (gravel, …) in the air outlet area
6 Base
LR Air direction

Installation plan
LW 101A

A

C

Legend:
UK819375a
All dimensions in mm.
A Front view
C Top view
≥ … Minimum clearances
1 Recess in base
2 Local heat pipe for heating water forward/return flow
3 Empty pipe for electric cables, minimum diameter 70mm
4 Condensate discharge, minimum diameter 50mm
5 Water-permeable surface (gravel, …) in the air outlet area
6 Base
LR Air direction
Legend: UK819376
All dimensions in mm.

A
Front view
C
Top view
≥...
Minimum clearances
1
Recess in base
2
Local heat pipe for heating water forward/return flow
3
Empty pipe for electric cables, minimum diameter 70mm
4
Condensate discharge, minimum diameter 50mm
5
Water-permeable surface (gravel, ...) in the air outlet area
6
Base
LR
Air direction
Installation plan

A

C

Legend:

UK819377a
All dimensions in mm.
A Front view
C Top view
≥... Minimum clearances
1 Recess in base
2 Local heat pipe for heating water forward/return flow
3 Empty pipe for electric cables, minimum diameter 70mm
4 Condensate discharge, minimum diameter 50mm
5 Water-permeable surface (gravel, ...) in the air outlet area
6 Base
LR Air direction

Installation plan LW 140A – LW 180A
A

Legend:

UK819378
All dimensions in mm.
A
C
≥ ...
1
2
3
4
5
6
LR

Front view
Top view
Minimum clearances
Recess in base
Local heat pipe for heating water forward/return flow
Empty pipe for electric cables, minimum diameter 70mm
Condensate discharge, minimum diameter 50mm
Water-permeable surface (gravel, ...) in the air outlet area
Base
Air direction

Installation plan

LW 251A
Installation plan

Legend:
UK819327
All dimensions in mm.
A Front view
C Top view
≥ ... Minimum clearances
1 Recess in base
2 Local heat pipe for heating water forward/return flow
3 Empty pipe for electric cables, minimum diameter 70mm
4 Condensate discharge, minimum diameter 50mm
5 Water-permeable surface (gravel, ...) in the air outlet area
6 Base
LR Air direction

Installation plan LW 310A
LW 71A – LW 251A

Row tank
Separate buffer tank

LW 71A – LW 251A
Separate buffer tank

LW 310A
Legend hydraulic diagram

1 Heat pump
2 Underfloor heating / radiators
3 Vibration isolation
4 Sylomer strip machine underlay
5 Closure and drainage
6 Expansion vessel packing list
7 Safety valve
8 Closure
9 Heating circulation pump
10 Non return valve / one way valve
11 Individual room regulation
12 Overflow valve
13 Steamight insulation
14 Service water circulation pump
15 Mixer circuit three-way mixer (MK1 discharge)
16 Expansion vessel supplied by customer
17 Heating rod (heating)
18 Mixer circuit four-way mixer (MK1 charge)
19 Heating rod (SW)
20 Mixer circuit circulation pump (FP1)
21 Feed circulating pump (reconnect the integrated circulating pump in the heat pump)
22 Manifold
23 Heating circulation pump
24 Switching valve (heating/service water) (B = normally open)
25 Heating element
26 Brine circulation pump
27 Dirt-trap 0.6 mm mesh
28 Split-tray for brine mix
29 Wall break through
30 Inlet pipe
31 Brine manifold
32 Ground collector
33 Ground slinkies
34 Groundwater spring pump
35 Wall bracket
36 Flow switch
37 Suction well
38 Inverted well
39 Rinse fitting heating circuit
40 Reuse fitting heating circuit
41 Brine / Water heat exchanger (cooling function)
42 Three-way mixer valve (cooling function MK1)
43 Cap valve
44 Filter and drainage valve
45 Domestic hot water charging pump
46 Direction of groundwater flow
47 Buffer storage

51 Separation tank
52 Gas- or oil-boiler
53 Wood boiler
54 Hot water cylinder
55 Brine pressure switch
56 Swimming pool heat exchanger
57 Geothermal heat exchanger
58 Ventilation system
59 Plate heat exchanger
60 Cooling cylinder
61 Compact distributor
62 Fancoil
63 Solar/ service water cylinder
64 Solar/ service water cylinder
65 Multifunction tank
66 Dual hydraulic module
67 Buffer tank wall mounted
68 Pipe lead-in
69 Ventilator
70 Scope of delivery, hydraulic tower, dual
71 Fresh water station
72 Scope of supply water/water booster
73 Accessories water/water booster optional
74 Controls supplied by customer
75 Cooling circuit module box removable for installation
76 Specific glycole mixture
77 Scald protection / thermostatic mixer valve
78 Solar pump assembly
79 Domestic hot water charging pump
80 Domestic hot water charging pump
81 Minimum distance to thermal decoupling of the mixing valve
82 Controls supplied by customer
83 Cooling circuit module box removable for installation
84 Domestic hot water charging pump
85 Domestic hot water charging pump
86 Domestic hot water charging pump
87 Domestic hot water charging pump
88 Domestic hot water charging pump
89 Domestic hot water charging pump
90 Domestic hot water charging pump
91 Domestic hot water charging pump
92 Domestic hot water charging pump
93 Domestic hot water charging pump
94 Domestic hot water charging pump
95 Domestic hot water charging pump
96 Domestic hot water charging pump
97 Domestic hot water charging pump
98 Domestic hot water charging pump
99 Domestic hot water charging pump
100 Room thermostat for cooling (optional)
101 Control unit (optional)
102 Dew-point monitor (optional)
103 Room thermostat for reference space in packing list
104 Supply heat pump
105 Cooling circuit module box removable for installation
106 Specific glycole mixture
107 Scald protection / thermostatic mixer valve
108 Solar pump assembly
109 Overflow valve must be closed
110 Packing list hydraulic tower
111 Mounting for additional heating element
112 Minimum distance to thermal decoupling of the mixing valve

Important notice!

These hydraulic diagrams are schematic representations and are for assistance only. They do not relieve of the obligation to carry out appropriate planning! They do not include all necessary shut-off valves, ventilator fittings or safety devices. These must be incorporated in accordance with the standards and regulations applicable to the respective installation. All country-specific standards, laws and regulations must be observed! The tubes have to be dimensioned according to the nominal volume flow of the heat pump resp. the free pressing of the integrated circulating pump. For detailed information and advice please contact our local sales partner!
Circuit diagram 2/2

LW 71 A – LW 81 A
Legend:

Equipement
- B10
- F1
- F2
- K3
- K10
- Q1
- Q5
- R2, R3
- R4
- R5
- R6
- R10
- R50
- R51
- STB
- X10, X12
- X52

- AEP
- HDP
- NDP
- VD1
- ZW1
- TWETWA
- TRL
- TVL
- THGCW
- - R51
- - X10
- - STB

1800 Ohm
3,24 kOhm
7,50 kOhm

UKFunction
- Defrosting pressostat
- High-pressure switch
- Low-pressure switch
- Optocoupler, switching on the fan
- Defrosting valve
- Contactor for compressor 1
- Contactor for auxiliary heating
- If installed: heat source input gauge
- If installed: heat source outlet gauge
- Return sensor
- Flow sensor
- Hot gas sensor
- Encoding resistor
- Voltage divider
- Voltage divider
- Safety temperature limiter heating element
- Terminal in switch box heat pump
- Plug on switch box heat pump (control line)
- Plug on switch box heat pump (gauge line)

Einbau

- 12345678
- 128
- A
- B
- C
- D
- E
- F

Änderung Datum
- 30.11.2015
- Pfleger

Änderung Erstellt
- 21.11.2014
- 30.11.2015

Änderung Bearbeiter
- R.

Änderung Geprüft
- sw bl

Änderung Norm Name
- rtsw sw

Änderung
- 12P E
Legend:

Equipement

B10
F1
F2
K3K4
K5
K10
Q1
Q2
Q5
R50
R51
R52
STB
X10
X12

AEPHDP
NDP
VBO
VEN
VEN
VD1
VD2
ZW1

UK
Function

Defrosting pressostat
High-pressure switch
Low-pressure switch
Optocoupler, switching on the fan
Optocoupler, switching on the fan
Optocoupler, switching on the fan
Defrosting valve
Contactor for compressor 1
Contactor for compressor 1
Contactor for auxiliary heating
Voltage divider
Voltage divider
Safety temperature limiter heating element
Terminal in switch box heat pump
Plug on switch box heat pump (control line)

- X12
- X10
- X10
- K3
- K5
- K10
- STB
- Q5
- F2
- B10

- R50
- R51
- R52

- F1
- Q1
- Q2

- K3
- K4
- K5

- X10
- F1
- Q1
- Q2

- K3
- K4
- K5

- X10
- F1
- Q1
- Q2

- K3
- K4
- K5

- X10
- F1
- Q1
- Q2
EC Declaration of Conformity in accordance with the EC Machinery Directive 2006/42/EC, Annex IIA

The undersigned confirms that the following designated device(s) as designed and marketed by us fulfill the standardized EC directives, the EC safety standards and the product-specific EC standards. In the event of modification of the device(s) without our approval, this declaration shall become invalid.

Designation of the device(s)

Heat Pump

<table>
<thead>
<tr>
<th>Unit model</th>
<th>Order number</th>
<th>Item number 1</th>
<th>Item number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW 71A-LUX 2.0</td>
<td>100540LUX02</td>
<td>100540</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 81A-LUX 2.0</td>
<td>100541LUX02</td>
<td>100541</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 101A-LUX 2.0</td>
<td>100542LUX02</td>
<td>100542</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 121A-LUX 2.0</td>
<td>100543LUX02</td>
<td>100543</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 140A-LUX 2.0</td>
<td>100544LUX02</td>
<td>100544</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 180A-LUX 2.0*</td>
<td>100545LUX02</td>
<td>100545</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 251A-LUX 2.0*</td>
<td>100546LUX02</td>
<td>100546</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 310A-LUX 2.0*</td>
<td>100547LUX02</td>
<td>100547</td>
<td>15029001</td>
</tr>
<tr>
<td>LW 160H-AV-LUX 2.1</td>
<td>100625LUX01</td>
<td>100625</td>
<td>15077701</td>
</tr>
<tr>
<td>LW 71A-HT 1</td>
<td>100540HT102</td>
<td>100540</td>
<td>15031841</td>
</tr>
<tr>
<td>LW 81A-HT 1</td>
<td>100541HT102</td>
<td>100541</td>
<td>15031841</td>
</tr>
<tr>
<td>LW 101A-HT 2</td>
<td>100542HT202</td>
<td>100542</td>
<td>15031914</td>
</tr>
<tr>
<td>LW 121A-HT 2</td>
<td>100543HT202</td>
<td>100543</td>
<td>15031914</td>
</tr>
<tr>
<td>LW 140A-HT 2</td>
<td>100544HT202</td>
<td>100544</td>
<td>15031914</td>
</tr>
<tr>
<td>LW 180A-HT 2</td>
<td>100545HT202</td>
<td>100545</td>
<td>15031914</td>
</tr>
</tbody>
</table>

EC Directives

- 2006/42/EG
- 2006/95/EG
- 2004/108/EG
- *97/23/EG
- 2011/65/EG

* Pressure equipment component

Category II
Module A1
Designated position: TÜV-SÜD Industrie Service GmbH (Nr.:0036)

Company:
ait-deutschland GmbH
Industrie Str. 3
93359 Kasendorf
Germany

Place, date: Kasendorf, 14.12.2015

Signature: Jesper Stannow
Head of Heating Development